Chase Joyner

801 Homework 2

September 15, 2015

Problem 1:

Let W be an r x s random matrix, and let A and C be n X r and n X s matrices of constants,
respectively. Show that E(AW + C) = AE(W) 4+ C. If B is an s x t matrix of constants, show that
E(AWB) = AE(W)B. If s = 1, show that Cov(AW + C) = ACov(W)A’.

Solution: Notice that the ijth element of the matrix AW + C' is
S
(AW + C)Z‘j = Z Qi Wkj + Cij.
k=1
By linearity of expectations in one-dimension, we have
S S
E <Z aiwyj + cij> = Z aiB(wy;) + cij.
k=1 k=1

By definition of E(AW + C'), we apply expectation to each element of this matrix. Therefore,
this proves that
E(AW + C) = AE(W) + C.

Note by the first part of this question, we have E(AW B) = AE(W B). All we need to show
is that E(WB) = E(W)B. The ijth element of the matrix W B is

(WB)ij = > wikbij.
k=1

Again, by linearity of expectations in one-dimension, we have

E (Z wikbkj> = ZE(wik)bkj-
k=1 k=1

Therefore, by definition of E(W B), we take expectations component wise and so E(WB) =
E(W)B. Thus, E(AWB) = AE(W)B. Lastly, we show that if s = 1, then Cov(AW + C) =



ACov(W)A’. By definition of Covariances, we have

Cov(AW + C) = E[(AW + C)(AW + C)] — E[AW + C|E[AW + C’
= E[(AW)(AW) + (AW)C' + C(AW) + CC')
— (AE(W))(AE(W))' 4+ AE(W)C' + C(AE(W)) + CC"
= AE[WW']A + AE(W)C' + CE(W")A' + CC"
— AE(W)E(W)'A' — AE(W)C' — CE(W)A' — CC’
= AE(WW"A' — AE(W)E(W) A’
= AB(WW') — E(W)E(W))A’
= ACov(W)A'.

Thus, we have proved the desired results.

Problem 2:
Show that Cov(Y') is nonnegative definite for any random vector Y.
Solution: Assume that Y € R” and let x € R™. Then, by problem 1, we have
2'Cov(Y)z = Cov(2'Y) = Var(2'Y) > 0.

Therefore, Cov(Y') is nonnegative definite.

Problem 3:

Show that if Y is an r-dimensional random vector with Y ~ N(u,V) and if B is a fixed n x r
matrix, then BY ~ N(Bu, BVB').

Solution: Let Y be an r-dimensional random vector with ¥ ~ N(u,V). Since V is a
symmetric matrix, we can decompose it as V = AA’ for some vector A. Then, we observe
that

YL AZ 44

Now let B be a fixed n X r matrix and so we have
BY £ BAZ + Bp.

Noticing that (BA)(BA) = BAA'B' = BV B’, we conclude BY ~ N(Bu, BVB').



Problem 4:

Let M be the o.p.m onto C(X). Show that (I — M) is the o.p.m onto C(X)*. Find tr(I — M) in
terms of r(X).

Solution: Let M be the o.p.m onto C(X), i.e.

reC(X) = Mzx=x
yeC(X)t = My=0

Then for any x € C(X),

Mr=2x = Mr—2=0 =— M-Iz=0 = (I-M)z=0.
For any y € C(X)*,

My=0 — My-y=-y — M-Iy=—y — ([I-My=y

Therefore, we conclude that (I — M) is the o.p.m onto C(X)*. Now we find tr(I — M) in
terms of r(X). Let M = O0’, where O = [01, ey or] and 01, ..., 0, is an orthonormal basis for
C(X). By thm B.35, M is the o.p.m onto C(X). Then, we have

tr(I — M) = tr(I) — tr(M) = tr(I) — tr(0O0)
=n—7r(00")=n—r(M)=n-r(X).

Therefore, we have tr(I — M) =n —r(X).

Problem 5:
For a linear model Y = X3+e¢, E(e) = 0, Cov(e) = 021, show that E(Y) = X3 and Cov(Y) = o?I.
Solution: By properties of expectations and covariance, we have
E(Y) = E(XS +¢) = X8+ E(e) = X
and
Cov(Y) = Cov(X S+ ¢e) = Cov(e) = o*I.

This shows the desired equalities.



Problem 6:

Let Y = (y1,y2,y3) with Y ~ N(u, V), where

p=(56,7)
and
2 01
V=10 3 2
1 2 4
Find

(a) the marginal distribution of yy,

(b) the joint distribution of y; and ys.

(c) the conditional distribution of y3 given y; = u; and y2 = ue,
(

(e) the conditional distribution of y; and y2 given y3 = ug,

(f) the correlations p12, p13, P23,

)
)
)
d) the conditional distribution of y3 given y; = uq,
)
)
)

(g) the distribution of
210 -15
z=[1 1 Y+ )
(h) the characteristic functions of Y and Z.

Solution:

(a) Define the row vector B = (1,0,0). Then, by problem 3, we have
BY =y, ~ N(Bu=5,BVB =2).
Therefore, the marginal distribution of y; is N(5,2).

(b) Define the matrix

Then, again by problem 3, we have

sy =[]~ ([ 5])



()

Let Y7 and Y5 be the vectors
Y1
Y, = and Y5 = .
1 [y?,] 2 [yj

Then we have that Y] given Y; = Y2 follows a Normal distribution with

=T+ [1 2] B g]_l ([Zj - [ED :7+%(u1—5)+§(u2—6)

i ) g]‘l -2

Therefore, y3 | y1 = u1,y2 = uz ~ N (7+ 3(u1 — 5) + 2(uz — 6),13/6).

and

First, we must obtain the joint distribution of y; and y3. Define the matrix

100
B_[o 0 1]'

o=~ ()

Let Y7 = [yg] and Y5 = [yl] Then, Y7 given Yo = u; follows a Normal distribution with

Then, by problem 3,

=T 1) (g —5) =T+ %(ul —~5)

and .
Vi=4-1(2)"1= 3
Therefore, y3 | y1 = ug ~ N(7_|_ %(Ul —5), %)

Let Y7 and Y5 be the vectors

Y| = [Z;] and Yy = [yg] .

Then, we have that Y] given Yo = us follows a Normal distribution with

« 5] (1], -1 lyg+ 13
iz [6_ + B (4)” " (u3 ) %u;ﬁ—%

and

vi=lo - e =1,

Therefore, y1,y2 | y3 = us ~ N(u*, V*).



(f) Recall the formula for correlation

Pij =

0,0

=0
LN

Therefore, we see

pr2 1/ V11022 Vv2-3
vy 11
P13 Vo33 /2.4 /8
V93 2 2
p23 fry = fry .
Vunvss V34 V12

(g) Since Y ~ N(p,V), then
V2 Az + L.

Therefore, we have
BY + p* iBAZ—i—B,u—F,u*.

This implies that BY + u* ~ N(Bu + p*, BV B'), where

210 ._[-15
B_[l 1 1] and _[—18]

Therefore, we have the distribution of Z to be
1 11 11
23 (o) [ 1))
(h) Recall that the characteristic function for the multvariate normal distribution is
- g/ 1 !
O(t) = exp {zt w— 575 Vt} :

Let ¢t = (t1,t2,t3)". Then, we have that
2

Py (t) =explit’ 6] — =t' |0

1

and




Problem 7:

The density of Y = (y1,y2,y3) is
(27_‘,)73/2|‘/‘71/267Q/27

where
Q =2y + 5 + Y3 + 2y1y2 — 8y1 — 4y2 + 8.
Find V! and p.

Solution: This multivariate normal distribution can be written as

1
n v e {50 - v - ).
This implies that
Q= -V Y —p)
=Y'VY —2/VY + Vi
=2y7 + 5 + 5 + 2y1y2 — Sy — 4dya + 8.
Solving the above equality for V! and p, we find
2 10 2
V=111 0l and p=|0
0 0 1 0
Problem 8:

Let Y = (y1,v2,93)" ~ N(u,02I). Consider the quadratic forms defined by the matrices M, Mo,
and Ms given below.

1 1 9 -3 -6 1 1 -5 4
My = ng‘?, M, = 11 -3 1 2|, M= 19 -5 25 20
—-6 2 4 4 =20 16

(a) Find the distribution of each Y'M;Y .
(b) Show that the quadratic forms are pairwise independent.
(c) Show that the quadratic forms are mutually independent.

Solution:

(a) First we must show that M; is an o.p.m for i = 1,2, 3; i.e. M;M; = M; and M/ = M,;.
It is easily seen that M/ = M, for i = 1,2,3. Also, squaring each matrix will show that
M; is idempotent for ¢ = 1,2,3. Therefore, M; is an o.p.m for ¢ = 1,2,3. Now since
Y ~ N(p,0%I) and M; is idempotent, we have
Y'M;Y/o? ~ x* (tr(Mi),,u'Miu/(Zo*2)) = X2(1,H/Mi,u/(20'2))

fori=1,2,3.



(b) Recall that if Y ~ N(u,0%I) and BA = 0, then Y’AY and Y’BY are independent.
Therefore, we just need to show that M;M; = 0 for i # j to establish pairwise indepen-
dence. So, we have

St e -3 -6 000
MMy=g |1 1 1) = |=3 1 2/=1000
11 1] 6 2 4 00 0
1'111‘31‘1 5 4 00 0
MMy=g |1 1 1| 51=5 25 —20[ =10 0 0
11 1] 4 —20 16 00 0

9 3 6], 1 -5 4 00 0

MpMs =0 |=3 1 2| o|-5 25 =20/ =00 0

6 2 4 4 —20 16 00 0

Therefore, we conclude that Y/M;Y are pairwise independent.

(¢) To establish mutual independence, we will first show that the M;Y’s are mutually inde-
pendent. To do this, note by problem 3 we have the distribution

- - /

MY M, M, M, M,
MY | = |My| Y ~ N | | M| p,0? [ M| I| M,
MY M | M; | Ms| | M;
_Mlﬂ _MlM{ MlMé MlMé
= Mo | 0% | MoM| MoMy MyM| | . (1)
| M3 | MsM| MsM} M;zM]}

By part (b), we conclude the covariance matrix in distribution (1) becomes

M1Y Mllu M1 0 0
MyY | ~N | | Mopl|,02| 0 My, 0
MgY M3,u 0 0 M3

Since the off diagonals of the covariance matrix in this joint distribution are all 0,
the M;Y’s are mutually independent. Now consider the function of M;Y, namely
(M;Y) (M;Y) = Y'M;Y. Since the M;Y’s are mutually independent, any function of
them should be as well. Thus, the Y’M;Y’s are mutually independent.



